Natural Plant Sugar Sources of Anopheles Mosquitoes Strongly Impact Malaria Transmission Potential
نویسندگان
چکیده
An improved knowledge of mosquito life history could strengthen malaria vector control efforts that primarily focus on killing mosquitoes indoors using insecticide treated nets and indoor residual spraying. Natural sugar sources, usually floral nectars of plants, are a primary energy resource for adult mosquitoes but their role in regulating the dynamics of mosquito populations is unclear. To determine how the sugar availability impacts Anopheles sergentii populations, mark-release-recapture studies were conducted in two oases in Israel with either absence or presence of the local primary sugar source, flowering Acacia raddiana trees. Compared with population estimates from the sugar-rich oasis, An. sergentii in the sugar-poor oasis showed smaller population size (37,494 vs. 85,595), lower survival rates (0.72 vs. 0.93), and prolonged gonotrophic cycles (3.33 vs. 2.36 days). The estimated number of females older than the extrinsic incubation period of malaria (10 days) in the sugar rich site was 4 times greater than in the sugar poor site. Sugar feeding detected in mosquito guts in the sugar-rich site was significantly higher (73%) than in the sugar-poor site (48%). In contrast, plant tissue feeding (poor quality sugar source) in the sugar-rich habitat was much less (0.3%) than in the sugar-poor site (30%). More important, the estimated vectorial capacity, a standard measure of malaria transmission potential, was more than 250-fold higher in the sugar-rich oasis than that in the sugar-poor site. Our results convincingly show that the availability of sugar sources in the local environment is a major determinant regulating the dynamics of mosquito populations and their vector potential, suggesting that control interventions targeting sugar-feeding mosquitoes pose a promising tactic for combating transmission of malaria parasites and other pathogens.
منابع مشابه
Plant-Mediated Effects on Mosquito Capacity to Transmit Human Malaria
The ecological context in which mosquitoes and malaria parasites interact has received little attention, compared to the genetic and molecular aspects of malaria transmission. Plant nectar and fruits are important for the nutritional ecology of malaria vectors, but how the natural diversity of plant-derived sugar sources affects mosquito competence for malaria parasites is unclear. To test this...
متن کاملAlteration of plant species assemblages can decrease the transmission potential of malaria mosquitoes.
Knowledge of the link between a vector population's pathogen-transmission potential and its biotic environment can generate more realistic forecasts of disease risk due to environmental change. It also can promote more effective vector control by both conventional and novel means.This study assessed the effect of particular plant species assemblages differing in nectar production on components ...
متن کاملMelanotic Pathology and Vertical Transmission of the Gut Commensal Elizabethkingia meningoseptica in the Major Malaria Vector Anopheles gambiae
BACKGROUND The resident gut flora is known to have significant impacts on the life history of the host organism. Endosymbiotic bacterial species in the Anopheles mosquito gut are potent modulators of sexual development of the malaria parasite, Plasmodium, and thus proposed as potential control agents of malaria transmission. RESULTS Here we report a melanotic pathology in the major African ma...
متن کاملThe Effect of Temperature on Anopheles Mosquito Population Dynamics and the Potential for Malaria Transmission
The parasites that cause malaria depend on Anopheles mosquitoes for transmission; because of this, mosquito population dynamics are a key determinant of malaria risk. Development and survival rates of both the Anopheles mosquitoes and the Plasmodium parasites that cause malaria depend on temperature, making this a potential driver of mosquito population dynamics and malaria transmission. We dev...
متن کاملمقایسه تاثیر آنتیبادیهای ضد میان روده پشه آنوفل استفنسی بر روی چرخه اسپروگونی انگل پلاسمودیوم برگئی در دو سویه از آنوفل استفنسی
Background & Aims: Malaria parasites attach to molecules on midgut surface of Anopheles mosquitoes to continue their life cycle. Here we try to evaluate the effect of anti-Anopheles midgut antibodies on coating these molecules and consequently blocking the transmission cycle of Plasmodium berghei inside their vectors. Materials & Methods: Balb/c mice were immunized with homogenized and degly...
متن کامل